
UCRL-WEB-200720

HTAR Reference Manual

HTAR Reference Manual - 1

Table of Contents

Preface 3
Introduction 4

HTAR's Role 4
How HTAR Works 6
TAR and HTAR Compared 8

How to Use HTAR 10
HTAR Execute Line 10
HTAR Error Conditions 13
HTAR Limitations and Restrictions 15
HTAR Environment Variables 17

HTAR Options 18
Action Options 18
Archive Option 19
Control Options 20

HTAR Examples 25
Creating an HTAR Archive File 25
Retrieving Files from within an Archive 27
Rebuilding a Missing Index 29
Specifying Very Many Files 31
Archiving Between Nonstorage Machines 32

Disclaimer 34
Keyword Index 35
Alphabetical List of Keywords 36
Date and Revisions 37

HTAR Reference Manual - 2

Preface

Scope: This HTAR Reference Manual explains the roles, usage, options, and features of LC's
locally developed file-bundling and storage utility (the "HPSS Tape Archiver" or
HTAR). Besides introducing the HTAR execute line, control options, and environment
variables, the text also compares HTAR with standard TAR and provides annotated
examples of using HTAR for the special tasks it is designed to handle (such as
retrieving files from within a stored archive, successfully managing very large archives,
or depositing an archive in a designated nonstorage location).

Availability: HTAR runs on all LC production IBM (AIX), Compaq (Tru64), and Linux/CHAOS
machines, on both open and secure graphics machines, and on many LC
special-purpose Suns.

Consultant: For help contact the LC customer service and support hotline at 925-422-4531 (open
e-mail: lc-hotline@llnl.gov, SCF e-mail: lc-hotline@pop.llnl.gov).

Printing: The print file for this document can be found at:

on the OCF: http://www.llnl.gov/LCdocs/htar/htar.pdf
on the SCF: https://lc.llnl.gov/LCdocs/htar/htar_scf.pdf

HTAR Reference Manual - 3

http://www.llnl.gov/LCdocs/htar/htar.pdf

Introduction

HTAR's Role
GOALS.

HTAR ("HPSS Tape Archiver") is an LC-designed TAR-like utility program that makes TAR-compatible
archive (library) files but with storage support and enhanced archive-management features. Despite its
misleading name, HTAR does not write files to tape, but to LC's open or secure archival storage (HPSS)
disk farm (or, optionally, to other specified LC hosts).

HTAR's enhancements include its ability to:

• bundle many small files together in memory (without using more local disk space) for more efficient
handling and transfer,

• send the resulting large archive file directly to (open or secure) storage without your needing to
invoke FTP separately (or to another LC machine if you use -F),

• retrieve individual files from a stored archive without moving the whole large archive back to your
local machine first (or, optionally, without even staging the whole archive to disk), and

• accelerate transfers to and from storage by deploying multiple threads and by using as many parallel
interfaces to storage as are available on the (production) machine where it runs.

SCOPE.
A subsection of this introduction (below (page 8)) compares traditional UNIX TAR with LC's enhanced
HTAR feature by feature to reveal the value of this added tool. But in general HTAR maintains full output
compatibility with the POSIX 1003.1 standard TAR format while successfully archiving hundreds or even
thousands of incoming files, handling files of greatly mixed sizes or types, and imposing no limit on the
total size of the archive files that it builds.

PERFORMANCE.
HTAR is designed to run quickly, especially when transferring large archives to storage. Its use of multiple
concurrent threads and HPSS parallel disk striping enable HTAR to reach transfer rates to storage as high
as 150 Mbyte/s, which exceeds 30 times the normal rate for transferring many small (around 4-Mbyte)
files separately. Users concerned about to-storage transfer rates should use the open or secure NETMON
(URL: http://www.llnl.gov/LCdocs/netmon) web sites to list or plot the latest to-storage network statistics.

FILE MANAGEMENT.
HTAR can store archive-member files as large as 8 Gbyte. There is no maximum size for a whole HTAR
archive (some have successfully reached 200 Gbyte). HTAR makes single copies of each stored archive
(COS 140) by default, but you can request dual-copy storage (for extra safety) of a mission critical archive
of any size by using HTAR's -Y 150 option.

HTAR Reference Manual - 4

http://www.llnl.gov/LCdocs/netmon

THIS GUIDE.
Because HTAR combines two features usually separate (file bundling and file storage), having some
understanding of how it works can help you use it effectively. So one subsection below shows and explains
the relationship among the three files (the archive file, the index file, and the consistency file) that HTAR
uses to manage every transaction. Also shown is a feature-by-feature comparison of HTAR with traditional
UNIX TAR.

One major section in this manual tells how to run HTAR, and spells out common error conditions,
known limitations (with work-arounds), and HTAR environment variables. A second major section describes
the function of each HTAR option (distinguishing the required action options from the control options).
A third section gives annotated step-by-step examples of how to use HTAR to handle common file-archiving
tasks and problems (including creation of archives containing very many files and optional transfer of
archives to or from nonstorage LC machines).

HTAR users may also benefit from familiarity with another LC-developed specialty tool that provides
nonstandard file-handling and file-transfer features linked to file storage, namely NFT (see the NFT
Reference Manual (URL: http://www.llnl.gov/LCdocs/nft) for details). HTAR itself does not, however,
use NFT's "persistence" mechanisms to manage file-storage delays. For a general introduction to LC storage
tools and techniques, see EZSTORAGE. (URL: http://www.llnl.gov/LCdocs/ezstorage)

HTAR Reference Manual - 5

http://www.llnl.gov/LCdocs/nft
http://www.llnl.gov/LCdocs/nft
http://www.llnl.gov/LCdocs/ezstorage

How HTAR Works
HTAR makes an archive (or library) file in the standard POSIX 1003.1 TAR format, which allows

TAR to open any HTAR archive file. But HTAR offers more services than ordinary TAR, and it therefore
needs extra internal machinery to support those services. While much of this extra machinery is hidden
during normal use, some of it reveals itself in HTAR status messages or command responses that might
prove surprising or confusing without some insight into how HTAR works. So this section briefly explains
how HTAR makes an archive file and the role that several support files play in that process.

Your HTAR HPSS
Local Internal Storage
Disk Buffers Disks
---- ------- -----

 ----------ARCHIVE FILE----
member1---> (multi- --->| member1 |
member2 threaded | member2 |
... parallel | ... |
membern transfer) | |
 | |
/usr/tmp--------------------->| /usr/tmp/HTAR_CF_CHK...|

 ----------INDEX FILE------
/tmp... --------------------->| 1 512-byte record/memb |
 | ... |
 | |

Archive File (name.tar)

 When you run HTAR with the create-archive (-c) option, the program first opens a
connection to storage (HPSS). It then deploys multiple threads to transfer in parallel
the local-disk files that you specify (the "archive members," left side of the diagram)
into a TAR-format envelope file created (unless you request otherwise) in your storage
home directory (right side in the diagram). This archive file never exists on local disk
(unless you demand it with the -E option), even in temporary directories on the machine
where HTAR runs. Instead, HTAR reads the member files piecewise into its internal
buffers and moves the data directly to HPSS (or to another host specified by -F),
where it assembles the archive.

HTAR simultaneously builds a separate index file (outside the archive) and a little
consistency file (deposited last inside the archive), discussed below. HPSS is very
reliable, but HTAR automatically uses a storage "class of service" (COS 140) that
keeps only one copy of your stored archive file. For files of special importance (only),
use HTAR's -Y 150 option to force creation of a duplicate (invisible) backup copy.

HTAR Reference Manual - 6

Index File (name.tar.idx)

 To allow archives of unlimited size and to support the direct extraction of any stored
archive member(s) without retrieving the whole archive to local disk, HTAR
automatically builds an external index file to accompany every archive that you create.
While making the archive, HTAR temporarily writes the index file to the local /tmp
file system on the machine where it runs (left side of the diagram), then transfers it
(by default) to the same storage (or other remote) directory where the archive itself
resides at the end of the process (right side of the diagram).

Each HTAR index file contains one 512-byte record for every member file stored in
the corresponding archive file, regardless of the member file's size (so even a
10,000-file archive will have an index file of only about 5 Mbyte). HTAR index files
are so much smaller than the archives that they support that the index file often remains
on HPSS disk (to rapidly respond to queries) even when the larger archive file itself
migrates to storage tape (cartridges). If you use HTAR's -E or -F options to force the
archive to a location other than storage, the index file goes to the same location as
the archive file.

Consistency File (/usr/tmp/HTAR_CF_CHK_nnnnn_mmmmmmmmm)

 Because the archive and index files are separate, HTAR maintains a consistency check
between them in an additional 1-block (256-byte) file always parked (as a last step)
at the end of each archive. This consistency file's name has the long numerical format
shown above, but begins with /var/tmp if generated on a Compaq machine and /tmp
if generated on a Sun. HTAR never extracts this file (unless you specifically request
it), but every use of -t and -v (together with -c or -x) reports this perhaps unexpected
consistency file at the end of HTAR's list of archived contents.

HTAR Reference Manual - 7

TAR and HTAR Compared
TAR was originally intended to write a specified set of files to offline tape (or retreive them), and hence

by extension, to simply write (or retrieve) a specified set of files to a local envelope or library file for easier
management. HTAR in many ways returns TAR to its roots because it is specifically designed to efficiently
store a set of files together in HPSS or get them back, not merely to make an archive file and leave it,
although you can force HTAR to do that.

This table compares the more familiar TAR features and effects with those (often enhanced) of HTAR:

HTARTARFeature
Only with -E or -FYes (the default)Can create an archive file

without storing it?
Yes (the default)NoCan create an archive file

without using local disk space?
Yes (the default)No, needs FTPCan store an archive file while

creating it?
NoNoCan store an archive file

without creating it?
No (to storage
disk)

YesCan write an archive to
(offline) tape?

Yes, with -FNoCan write an archive to another
machine?

Yes, with -FNoCan read an archive from
another machine?

Yes, if -X firstYes (the default)Can read any TAR archive

file?
Yes (the default)YesCan read any HTAR archive

file?
Yes (the default)NoCan extract just one file from

a stored archive?
NoYesCan add file(s) to an existing

archive?

No, -f requiredYes (tape)Default target if no archive

specified?
Yes (-L disables)YesTreats input directories

recursively?
Yes, with -pNo (uses

UMASK)
Preserves original permissions
on files?

YesNoDepends on HPSS availability

to work?

HTAR Reference Manual - 8

HTARTARFeature
Only with -Y 150NoArchive duplicated

automatically in storage?
YesNoBuilds and needs an external

index file?
YesNoBuilds and needs a consistency

check file?

Yes (-w disables)YesOverwrites existing files

without warning?
NoYes (with -f -)Can use standard input or

output?
YesNoOrder of options important?
File names and
properties

File names onlyTable of contents (-t) reveals
what?

HTAR Reference Manual - 9

How to Use HTAR

HTAR Execute Line
To run HTAR you must log on to an LC production machine where HTAR has been installed at a time

when the storage system (HPSS) is up and available to users. The HTAR execute line has the general form

htar action archive [options] [filelist]
and the specific form

htar -c|t|x|X -f archivename [-BdEFhHILmMopSTvVwY] [flist]
where exactly one action and the archivename are always required, while the control options and (except
when using -c) the filelist (or flist) can be omitted (and the options can share a hyphen flag with the action
for convenience). Here,

-c (create) opens a parallel FTP connection to storage, creates an archive file at the
storage location (not online) and with the name specified by -f, and transfers (copies)
into the archive each file specified by filelist (required whenever you use -c). If
archivename already exists, HTAR overwrites it without warning. To create a local
archive file instead (the way TAR does), also use -E; to deposit it on a nonstorage
host, also use -F. If filelist specifies any directories, HTAR includes them and all of
their children recursively (using -L disables this recursion).

-t (table of contents) opens a parallel FTP connection to storage, then lists (in the order
that they were stored) the files currently within the stored archive file specified by -f,
along with their owner, size, permissions, and modification date (the list includes
HTAR's own consistency file (page 6)). Here filelist defaults to * (all files in the
archive), but you can specify a more restrictive subset (usually by making filelist a
filter).

-x (lowercase eks, extract) opens a parallel FTP connection to storage (or to another
remote host specified by -F), then transfers (extracts, copies) from the stored (remote)
archive file specified by -f each internal file specified by filelist (or all files in the
archive if you omit filelist). If filelist specifies any directories, HTAR extracts them
and all their children recursively (using -L disables recursion). If any file already
exists locally, HTAR overwrites it without warning, and it creates all new files with
the same owner and group IDs (and if you use -p, with the same UNIX permissions)
as they had when stored in the archive. (If you lack needed permissions, extracted
files get your own user and group IDs and the local UMASK permissions; if you lack
write permission then -x creates no files at all.) Note that -x works directly on the
remote archive file; you never retrieve the whole archive from storage just to extract
a few specified files from within it (impossible with TAR).

HTAR Reference Manual - 10

-X (uppercase eks, index) opens a parallel FTP connection to storage (or to another
remote host specified by -F), then creates an (external) index file for the existing
archive file specified by -f (a stored TAR-format file by default, a local TAR-format
file if you also use -E). Using -X rescues an HTAR archive whose (stored) index file
was lost, and it enables HTAR to manage an archive originally created by traditional
TAR. The resulting external index file is stored if the corresponding archive is stored,
but local if the archive is local (with -E). See the "How HTAR Works (page 6)"
section for an explanation of HTAR index files.

-f archivename

 (required option) specifies the archive file on which HTAR performs the -c|t|x|X
actions described above. HTAR has no default for -f (whose argument must appear
immediately after the option name). Since HTAR (normally) operates on stored
archive files, archivename also locates the archive file relative to your storage (HPSS,
not online) home directory: a simple file name here (e.g., abc.tar) resides in your
storage home directory, while a relative pathname (e.g., xyz/abc.tar) specifies a
subdirectory of your storage home directory (i.e., /users/unn/username/xyz/abc.tar),
the recommended practice for batch jobs. Never use tilde (~) in archivename because
the shell expands it into your online, not your storage, home directory. HTAR's -f
makes no subdirectories; you must have created them in advance (with FTP's mkdir
option) before you mention them in archivename. When used with -F to make or read
an archive on a nonstorage machine, archivename should be the full pathname of the
archive on the remote machine (e.g., /var/tmp/abc.tar).

filelist specifies the input files for -c and the subset of archived files to process (for -t, -x, or
-X). Omitting filelist for -c yields a null result and the error message "refusing to
create empty archive." Omitting filelist for -t, -x, or -X defaults to *, all files within
the archive file specified by -f. Here filelist can include a blank-delimited list of files,
UNIX file filters (metacharacters), or directory name(s) to be processed recursively.
Use -L to specify directories without recursion.

SYNTAX ISSUES.
Traditional TAR allows great flexibility in ordering its options or combining them with one option flag,
so that

tar -vfc abc.tar *
works just the same as

tar -c -v -f abc.tar *
But HTAR requires more care in ordering options on its execute line, so that

htar -vfc abc.tar *
fails completely, yielding only a syntax warning reminder but no output. With HTAR:
(1) "actions" -c|t|x|X must precede all other options (required whether they share a single option flag (-)
or each have threir own), and
(2) the archive specifier -f must immediately precede its argument (the archivename), again regardless of
whether -f has its own flag or shares with others.

HTAR Reference Manual - 11

Thus only these combinations

htar -cvf abc.tar *

htar -c -v -f abc.tar *
will work for the example case begun above.

DEFAULTS.
By default, HTAR creates an archive by copying files from the online directory where you run it into a
file in your storage (HPSS) home directory, and it extracts files by reversing that process. You must always
specify the name of the archive file on which HTAR operates (there is never a default archive). Once you
name the archive, HTAR calls the corresponding external index file archivename.idx by default and stores
it in the same HPSS directory as the archive (by default). HTAR's -I option lets you specify an nondefault
name or location for the index file. The HTAR consistency file's name begins with /usr/tmp/HTAR on
IBM machines, /var/tmp/HTAR on Compaq (Tru64) machines, and /tmp/HTAR on Sun machines (a default
that you cannot change). On Linux/CHAOS machines, the consistency file's name begins with
/var/tmp/uname/HTAR, where uname is your login name on the machine where you run HTAR. By default
HTAR stores a single copy of each archive in HPSS (COS 140), regardless of its size. But you can request
dual-copy storage (COS 150) of any mission critical HTAR archive, regardless of its size, by using the
-Y 150 option on HTAR's execute line.

HTAR Reference Manual - 12

HTAR Error Conditions
The most common error conditions and HTAR's (often cryptic) responses to them are summarized here

to help you troubleshoot:

Storage (HPSS) is down.

 When HPSS is unavailable to users (perhaps for maintenance), no stored archive can
be read or written. HTAR returns a message of this form and ends (there is no
persistence as with NFT):

hpssex_OpenConnection: unable to obtain remote site info
result = -5000, errno = 0
Unable to setup communication to HPSS. Exiting...
###WARNING htar returned non-zero exit status.
 255 = /usr/local/bin/htar.exe...

Specified archive directory does not exist.

 If -f specifies a child directory (of your storage home directory) that you have not
previously created (with FTP's mkdir option), HTAR returns an error message that
often only hints at the actual problem. When you attempt to create an archive in a
nonexistent (sub)directory, HTAR responds:

***Error -2 on hpss_Open (create) for archivename
###WARNING htar returned non-zero exit status.
 72 = /usr/local/bin/htar.exe...

When you attempt to extract files from an archive in a nonexistent (sub)directory,
HTAR at least replaces the first line of this error message with:

***Fatal error opening index file archivename.idx
###WARNING htar returned non-zero exit status.
 72 = /usr/local/bin/htar.exe...

Specified archive file does not exist.

 If -f specifies an archive file that does not exist (perhaps because you deleted it or
mistyped its name), HTAR responds:

[FATAL] no such HPSS archive file: archivename
###WARNING htar returned non-zero exit status.
 72 = /usr/local/bin/htar.exe...

Specified index file does not exist.

 If you try to list (-t) or extract (-x) files from an actual HTAR archive whose
corresponding external index file (archivename.idx) has been deleted or moved,
HTAR pinpoints the problem only by reporting the missing index name:

HTAR Reference Manual - 13

No such file: archivename.idx
###WARNING htar returned non-zero exit status.
 72 = /usr/local/bin/htar.exe...

You can work around the missing index by using HTAR's -X (uppercase eks) option
to rebuild the index while the archive remains stored, or you can retrieve the whole
archive from storage with FTP and then open it with TAR.

HTAR's filelist omitted.

 If you try to create (-c) an archive without specifying a filelist (or without using a
filelist replacement such as -L), HTAR connects to HPSS but quickly ends with the
message

Refusing to create empty archive.

If you try to list (-t) or extract (-x) without specifying a filelist, HTAR defaults to
processing all files in the archive.

HTAR run with no options.

 Because HTAR requires exactly one action (-c|t|x|X) and a specified archive file (-f)
to run, executing the program with nothing else on the execute line yields a terse
syntax summary. There is no prompt for input, and HTAR terminates.

Command line too long for shell.

 The easy way to build an HTAR archive of very many like-named files is to specify
them indirectly by using a UNIX metacharacter (filter, wild card) such as * (to match
any string) or ? (to match any single character). But if the selected file set has thousands
of members, the list of input names that the UNIX shell generates by expanding such
an "ambiguous file reference" may grow too long to handle. See the Limitations and
Restrictions (page 15) section below for several ways to work around such excessively
long command lines when building large archives with HTAR.

Wild cards (metacharacters) used for retrieval.

 HTAR allows * only to create an archive, not to retrieve files from one ("no match"
is the usual, but not the only possible, error message). See the Retrieving Files (page
27) section below for an analysis and possible ways to work around this limitation.

HTAR Reference Manual - 14

HTAR Limitations and Restrictions
The current version of HTAR has the following known limitations or usage restrictions:

• I/O:
HTAR cannot read from UNIX pipes. For example, you cannot pipe in (with |) a list of file names
generated on the fly by CAT or FIND (you must use HTAR's -L option instead). However, you can
redirect HTAR output into a file for separate postprocessing (see the Retrieving Files (page 27)
section for one application of this).

• METACHARACTERS:
HTAR leaves all processing of metacharacters (filters or wild cards, such as *) to the shell. This
means that when you create an HTAR archive you can use * to select from among your local files
to store, but when you retrieve specific files from within an already stored archive you CANNOT
use * to select from among the stored files to get back. See the Retrieving Files (page 27) example
below for details on this limitation, and a few suggested but inelegant ways to work around it. Another
side effect of this approach to metacharacters is that C shell (CSH) users must type the three-character
string -\? (instead of -?) to display HTAR's help message.

• UPDATES:
No options exist to update (replace), remove (delete), or append to individual files that HTAR has
already archived. You must replace (create again) an entire archive to alter the member files within
it.

• NAME LENGTH:
To comply with POSIX 1003.1 standards regarding TAR-file input names, the longest input file
name of the form prefix/name that HTAR can accept has 154 characters in the prefix and 99 characters
in the name. Link names likewise cannot exceed 99 characters.

• FILE SIZE:
The maximum size of a single member file within an HTAR archive is 8 Gbyte (a limit imposed by
the format of the TAR header). HTAR imposes no limit on the maximum size of an archive file
(some have successfully reached 200 Gbyte), but local disk space (when using -E or -F) or storage
space might externally limit an archive's size. Users can specify a maximum number of member files
per archive with HTAR's -M option.

• PASSWORDLESS FTP:
Because HTAR (unlike FTP) does not support user dialog with a server and has no password-passing
option, you can only manipulate HTAR archives on machines with preauthenticated (passwordless)
FTP servers. This limits the use of HTAR's -F option to LC production machines only, since there
is no way to satisfy the password request from other FTP servers.

TOO MANY NAMES.
For users who make HTAR archives containing thousands of files, a different kind of limitation poses
problems, a limitation of the UNIX shell (csh, bsh, ksh) rather than of the HTAR program itself. One would
normally select multiple files for archiving by using a UNIX "ambiguous file reference," a partial file name
adjacent to one or more shell metacharacters (or "wild card" filters, such as the asterisk(*)). Your current

HTAR Reference Manual - 15

shell automatically expands the metacharacter(s) to generate a (long) alphabetical list of matching file
names, which it inserts into the execute line as if you had typed them all yourself. Thus

htar -cf test.tar a*
might become equivalent to a command line with dozens of a-named files on the end. Each shell has a
maximum length for execute lines, however, and if your specified metacharacter filter matches thousands
of file names, HTAR's execute line may grow too long for the shell to accept. This would prevent building
your intended many-file archive.

WORK-AROUND 1: USE A DIRECTORY.
The most effective, least resource-intensive way to work around the problem of having a (virtual) HTAR
execute line too long for the shell to handle is to plan ahead and keep (or generate) in a single directory
all and only the files that you want to archive. HTAR processes directory names recursively by default.
So if you specify only the relevant directory name on HTAR's execute line, HTAR will (internally) archive
every file within the directory without any filter-induced length problems. For example,

htar -cf test.tar projdir
will successfully archive any number of files within the PROJDIR directory yet use no troublesome
shell-mediated file-name generation to do it.

WORK-AROUND 2: USE FIND.
The UNIX FIND utility is designed to produce lists of files (that meet specified criteria) to feed into other
programs for further processing. So FIND offers a second way for HTAR to archive very large numbers
of files without having a very long execute line. Indirection is required for success, however. The "natural"
use of FIND's -EXEC option to run another program (here, HTAR) driven by a list of files from FIND,
for example,

[WRONG]
find . -name 'a*' -print -exec htar -cf test.tar {} \;

fails to produce the desired effect. This actually runs HTAR once (to build an archive called test.tar) for
each successive input file (here, files beginning with A). If there are thousands of files, HTAR just repeatedly
creates a one-file archive thousands of times (each replacing the previous archive) so that only the last file
processed really remains in test.tar at the end.

Instead, you must build an intermediate, external list of file names (in a file) with FIND, then have
HTAR process that list with its -L option. The correct sequence is:

 find . -name 'a*' -print > alist
 htar -cf test.tar -L alist
 rm alist

(The use of the metacharacter * in FIND's execute line here does not pose the same too-long problem as
it did originally in HTAR's execute line because the surrounding quotes shelter the filter from shell
processing. FIND's -NAME option generates the list of matching names internally, without expanding
FIND's execute line.) Later, if HTAR is modified to accept piped input, a UNIX pipe (|) between FIND
and HTAR could eliminate the need for an overt external list-of-names file while using this same strategy.

HTAR Reference Manual - 16

HTAR Environment Variables
HTAR uses the following HPSS-related environment variables if they are available on the machine

where it runs:

HPSS_HOSTNAME

 specifies the host name or IP address of the network interface to which HPSS mover(s)
should connect when transferring data at HTAR's request (overridden by the file
specified in PFTP_CONFIG_FILENAME). The default interface (the alternative to
HPSS_HOSTNAME) is often slow, such as the control Ethernet of an IBM SP
machine.

HPSS_PATH_ETC

 specifies the pathname of a local directory containing the HPSS network options file.

HPSS_SERVER_HOST

 specifies the server host name and optional port number of the HTAR server.

HTAR_COS specifies the default class of service (COS) ID for the archive file that HTAR creates,
or contains the string AUTO to force HPSS to automatically select the class of service
based on the file size. HTAR option -Y overrides HTAR_COS (see the end of the
next section for details).

PFTP_CONFIG_FILENAME

 specifies the pathname of a file (usually /etc/pftp_config) that contains the list of
HPSS network interfaces to be used for parallel transfers of files to and from stored
HTAR archives.

HTAR Reference Manual - 17

HTAR Options

Action Options
Exactly ONE of these action options is required every time that you run HTAR.

-c (create) opens a parallel FTP connection to storage, creates an archive file at the
storage location (not online) and with the name specified by -f, and transfers (copies)
into the archive each file specified by filelist (required whenever you use -c). If
archivename already exists, HTAR overwrites it without warning. To create a local
archive file instead (the way TAR does), also use -E; to deposit it on a nonstorage
host, also use -F. If filelist specifies any directories, HTAR includes them and all of
their children recursively (using -L disables this recursion).

-t (table of contents) opens a parallel FTP connection to storage, then lists (in the order
that they were stored) the files currently within the stored archive file specified by -f,
along with their owner, size, permissions, and modification date (the list includes
HTAR's own consistency file (page 6)). Here filelist defaults to * (all files in the
archive), but you can specify a more restrictive subset (usually by making filelist a
filter).

-x (lowercase eks, extract) opens a parallel FTP connection to storage (or to another
remote host specified by -F), then transfers (extracts, copies) from the stored (remote)
archive file specified by -f each internal file specified by filelist (or all files in the
archive if you omit filelist). If filelist specifies any directories, HTAR extracts them
and all their children recursively (using -L disables recursion). If any file already
exists locally, HTAR overwrites it without warning, and it creates all new files with
the same owner and group IDs (and if you use -p, with the same UNIX permissions)
as they had when stored in the archive. (If you lack needed permissions, extracted
files get your own user and group IDs and the local UMASK permissions; if you lack
write permission then -x creates no files at all.) Note that -x works directly on the
remote archive file; you never retrieve the whole archive from storage just to extract
a few specified files from within it (impossible with TAR).

-X (uppercase eks, index) opens a parallel FTP connection to storage (or to another
remote host specified by -F), then creates an (external) index file for the existing
archive file specified by -f (a stored TAR-format file by default, a local TAR-format
file if you also use -E). Using -X rescues an HTAR archive whose (stored) index file
was lost, and it enables HTAR to manage an archive originally created by traditional
TAR. The resulting external index file is stored if the corresponding archive is stored,
but local if the archive is local (with -E). See the "How HTAR Works (page 6)"
section for an explanation of HTAR index files.

HTAR Reference Manual - 18

Archive Option
This option is required every time that you run HTAR.

-f archivename

 (required option) specifies the archive file on which HTAR performs the -c|t|x|X
actions described above. HTAR has no default for -f (whose argument must appear
immediately after the option name). Since HTAR (normally) operates on stored
archive files, archivename also locates the archive file relative to your storage (HPSS,
not online) home directory: a simple file name here (e.g., abc.tar) resides in your
storage home directory, while a relative pathname (e.g., xyz/abc.tar) specifies a
subdirectory of your storage home directory (i.e., /users/unn/username/xyz/abc.tar),
the recommended practice for batch jobs. Never use tilde (~) in archivename because
the shell expands it into your online, not your storage, home directory. HTAR's -f
makes no subdirectories; you must have created them in advance (with FTP's mkdir
option) before you mention them in archivename. When used with -F to make or read
an archive on a nonstorage machine, archivename should be the full pathname of the
archive on the remote machine (e.g., /var/tmp/abc.tar).

HTAR Reference Manual - 19

Control Options
These options change how HTAR behaves, but none is required (default values are indicated when

they exist).

-? displays a short help message (a syntax summary of the HTAR execute line and a
one-line description of each option). Users running HTAR under the C shell (CSH)
will probably have to use the three-character string -\? to display this help message.

-B adds block numbers to the listing (-t) output (normally used only for debugging).

-d debuglevel

 (default is 0) sets to an integer from 0 through 5 the level of debug output from HTAR,
where 0 disables debug information for normal use and 1 to 5 enable progressively
more elaborate debug output.

-E emulates TAR by forcing the archive file to reside on the local machine (where you
run HTAR) rather than in HPSS (storage), where it resides by default (-f always
specifies the archive pathname, which -E interprets as local rather than remote). See
also -F for making nonstorage remote archives. The HTAR index file goes into the
same (local) directory as the archive.

-F [user@]host[#port]

 overrides the HTAR default of a stored archive and specifies on which remote machine
(host) the archive resides other than in HPSS. For creating archives, host is the sink
machine; for extracting files from existing archives host is the source machine (see
the between-machine example (page 32) for how to use -F properly). See also -E for
making nonstorage local archives. The HTAR index file goes into the same (remote)
directory as the archive. Any LC production machine with preauthenticated
(passwordless) FTP service can be the -F host. HTAR still contacts the HPSS server
even though the archive does not reside in HPSS, just to log all -F transactions. The
user and port fields are seldom needed or appropriate because they usually betray the
need for an FTP password and HTAR has no means to transmit one (the default user
is you, the default port is 21).

-h (used only with -c; has no effect otherwise) for each symbolic link that it encounters,
causes HTAR to replace the link with the actual contents of the linked-to file (stored
under the link name, not under the file's original name). Later use of -t or -x treats the
linked-to file as if it had always been present as an actual file with the link name.
Without -h, HTAR records, reports, and restores every symbolic link overtly, but it
does not replace the link with the linked-to contents.

-H subopt[:subopt...]

specifies a colon-delimited list of HTAR suboptions to control program execution.
Possible subopt values now include:

HTAR Reference Manual - 20

cksum=on|off (default is off) enables or disables generating checksums when
copying member files into the archive. Enabling checksums usually
degrades HTAR's I/O performance and increases its CPU utilization.

nostage avoids prestaging tape-resident (stored) archive files when HTAR
performs -x, -X, or -t actions.

rmlocal removes local member files after HTAR successfully writes them
into the archive file (used with -c).

verify=test[,test,..] performs posttransfer verification after creating an archive, where
test can be any of:

cksum|nocksum

 enables or disables (the default) verifying member
file checksums by reading the archive file or by
comparing the index file checksum with a
checksum of the local member files.

compare|nocompare

 enables or disables (the default) byte-by-byte
comparison of the local member files with the
corresponding archive files.

paranoid|noparanoid

 enables or disables (the default) extreme efforts to
detect problems (such as discovering whether local
files were modified during archive creation before
deleting them if authorized by RMLOCAL).

-I indexname

specifies a nondefault name for the HTAR external index file that supports the archive
specified by -f.
WARNING: if you use -I to make any nondefault index name (3 cases, below) when
you create (-c) an archive, then you MUST also use -I with the same argument every
time you extract (-x) files from that archive (else HTAR will look for the default
index, not find it, and end with an error).
There are three cases based on the first character of indexname:

HTAR Reference Manual - 21

. (dot) If indexname begins with a period (dot), HTAR treats it as a suffix
to append to the current archive name.
Example: -I .xnd yields an index file called archivename.xnd

/ If indexname begins with a / (slash), HTAR treats it as an absolute
pathname (you must create all the subdirectories ahead of time with
FTP's mkdir option).
Example: -I /users/unn/yourname/projects/text.idx uses that absolute
pathname in storage (HPSS) for the index file.

other If indexname begins with any other character, HTAR treats it as a
relative pathname (relative to the storage directory where the archive
file resides, which might be different than your storage home
directory).
Example: -I projects/first.index locates first.index at
storagehome/projects/first.index if the archive file is in your
storagehome (the default), but tries to locate first.index at
storagehome/projects/projects/first.index if the archive was specified
as -f projects/aname in the first place. (All such subdirectories must
be created in advance.)

-L inputfile (used with -c) writes the files and directories specified by their literal names (in the
inputfile, which contains file names one per line) into the archive specified by -f.
Directories are not treated recursively; only a directory entry (but not its subdirectories
or subfiles) are written to the archive. Normal metacharacters (tilde, asterisk, question
mark) are treated literally, not expanded as filters.
(used with -x) retrieves the files and directories specified by their literal names. See
the Retrieving Files (page 27) example below for how to use -L instead of wild cards
to retrieve only specified files from a stored archive.

-m (used only with -x) makes the time of extraction the last-modified time for each
member file (the default preserves each file's original time of last modification). The
timestamp on directories is unpredictable because (1) the operating system may update
the directory's last-modified time whenever HTAR extracts files from it, and (2)
HTAR with -m will update the timestamp on highest-level directories only, not on
intermediate directories created as it extracts child files recursively.

-M maxfiles (default is unlimited) specifies the maximum number of member files allowed when
you use -c to create an HTAR archive.

-o (used only with -x) (default for all nonroot users) causes the extracted files to take on
the user and group ID (UID, GID) of the person running HTAR, not those of the
orignial archive. This makes a difference for root users but not for ordinary HTAR
users.

HTAR Reference Manual - 22

-p preserves all UNIX permission fields (on extracted files) in their original modes,
ignoring the present UMASK (the default changes the permissions to the local UMASK
where HTAR extracts the files). Root users can also preserve the setuid, setgid, and
sticky bit permissions with this option.

-S bufsize (default is 8 Mbyte) specifies the buffer size to use when HTAR reads from or writes
to an HPSS archive file. Here bufsize can be a plain integer (interpreted as bytes), an
integer suffixed by k, K, kb, or KB for kilobytes, or an integer suffixed by m, M, mb,
or MB for megabytes (e.g., 16mb). HTAR's default bufsize is picked to maximize its
file-transfer peformance on the ASCI White machine and -S is intended mostly for
LC staff, not ordinary HTAR users (note that HTAR does not use the default PFTP
block size of 1 Mbyte for storage transfers, nor the 256-kbyte block that is the HPSS
default at some nonLLNL HPSS sites).

-T maxthreads

 specifies the maximum number of threads that HTAR will use to copy member files
to or from the archive file (default is 15, and HTAR reports the actual number used
on each run if you invoke -v or -V). HTAR uses the ratio of buffer size (see -S) to
average member file size to estimate how many threads to deploy.

-V (uppercase vee) requests "slightly verbose" reporting of file-transfer progress (often
very brief, overwritten messages to the terminal). Do not use with -v.

-v (lowercase vee) requests "very verbose" reporting of file-transfer progress. For each
member file transferred to an archive, HTAR prints A (added) and its name on one
line; for each member file extracted from an archive, HTAR prints X, its name, and
its size on a line, along with a summary of the whole transfer at the end. Do not use
with -V.

-w (works only with -x, not with -c) lists (one by one) each member file to be extracted
from the archive and prompts you for your choice of confirmatory action, where
possible responses are:

y[es] extracts the named file.

n[o] skips the named file.

a[ll] extracts the named file and all remaining (not yet processed) selected
files too.

q[uit] skips the named file and stops prompting. HTAR ends.

-Y auto | [archiveCOS][:indexCOS]

 specifies the HPSS class of service (COS) for each stored archive and its corresponding
index file. The default is AUTO, which causes HTAR to use a site-specific COS
chosen for archive suitability (at LC, the default COS for HTAR files is 140, which
automatically stores a single copy of each archive, regardless of its size). You can

HTAR Reference Manual - 23

specify a nondefault COS for the archive, the index, or both (e.g., -Y 120:110), but
this is usually undesirable except when testing new HPSS features or devices (if your
archive size grows to exceed that allowed by a nondefault COS, HPSS will stop the
transfer and HTAR will end with an error). Use the special COS 150 (that is, -Y 150)
to request dual-copy storage of any mission critical archive of any size for extra safety.
Using -Y overrides the HTAR_COS environment variable.

HTAR Reference Manual - 24

HTAR Examples

Creating an HTAR Archive File

GOAL: To create an HTAR archive file in a subdirectory of your storage home directory and use
a filter to install several files within that stored archive.

STRATEGY: (1) One HTAR execute line can perform all of the desired tasks quickly and in parallel:

• The -cvf options create (c) an archive, verbosely (v) report the incoming files, and
(f) name the envelope file.

• The relative pathname case3/myproject.tar locates the archive (myproject.tar) in
pre-existing subdirectory case3 of your storage home directory (omitting case3/
leaves the archive at the top level of your storage home directory). HTAR will not
create case3 itself, however; you must have previously used FTP's mkdir option.

• File filter tim* selects all and only the files whose names begin with TIM (in the
directory where you run HTAR) to be stored in the archive.

(2) HTAR opens a preauthenticated connection to your storage (HPSS) home directory
and reports its housekeeping activities (very quickly, in lines that overwrite, so you may
not notice all of these status reports on your screen).
(3) HTAR creates your requested archive and uses parallel FTP to move your requested
files directly into it.
(4) The last incoming file that HTAR reports is always the 256-byte consistency file by
which HTAR coordinates your archive with its external index file.
(5) HTAR summarizes the work done (time, rate, amount, thread count), then copies into
storage the index file that it made, destroys the local version, and ends.

htar -cvf case3/myproject.tar tim* ---(1)

 HTAR: Opening HPSS server connection ---(2)
 HTAR: Getting HPSS site info
 HTAR: Writing temp index file to /usr/tmp/aaamva09A

 HTAR: creating HPSS Archive file case3/myproject.tar ---(3)
 HTAR: a tim1.txt
 HTAR: a tim2.txt
 HTAR: a tim2a.txt
 HTAR: a tim3.a
 HTAR: a time.txt
 HTAR: a time2.gif
 HTAR: a /tmp/HTAR_CF_CHK_13805_997722535 ---(4)

HTAR Reference Manual - 25

 HTAR: Create complete. 29,696 bytes written, ---(5)
 max threads: 8
 Transfer time: 0.352 seconds (0.084 MB/s)

 HTAR: Copying Index File to HPSS...Creating file
 HTAR: HTAR SUCCESSFUL

HTAR Reference Manual - 26

Retrieving Files from within an Archive

GOAL: To retrieve several files from within an existing stored HTAR archive file (without
retrieving the whole archive first).

STRATEGY: HTAR does not process metacharacters (file filters such as *) itself, but leaves them for
the shell to exand and compare with file names in your local directory. Hence, you
CANNOT use * to select a subset of already archived files to retrieve. For example,
"natural" execute lines

 htar -xvf case3/myproject.tar time* [WRONG]
 htar -xvf case3/myproject.tar 'time*' [WRONG]

both FAIL to select (and hence to retrieve) any stored files from the MYPROJECTS.TAR
stored archive (each yields its own set of error messages). These lines work only
accidentally, if you happen to have files with the same name in both your local directory
and your stored archive (unlikely except when you are just testing HTAR).
WORKAROUNDS:
(1A) Type the name of each file that you want to retrieve (at the end of the HTAR execute
line).
(1B) If you have a long list of files to retrieve, or if you plan to reuse the same retrieval
list often, put the list of sought files into a file and use HTAR's -L option to invoke that
list. You can use HTAR's -t (reporting) option to help generate that retrieval list by
reporting all the files you have archived and then editing that report to include only the
relevant file names to retrieve. For instance,

 htar -tf case3/myproject.tar > hout
 grep 'time' hout | cut -c 50-80 > tlist

captures the list of all your stored files in the local file HOUT, and then selects just the
file names that contain the string TIME for use with HTAR's -L option (here, in local file
TLIST).

(1) Once you have laid the groundwork above, a single HTAR execute line can retrieve
your specified files quickly and in parallel from within your stored archive:

• The -xvf options request retrieval/extraction (x), verbosely (v) report the retrieved
files, and (f) name the target archive.

• The relative pathname case3/myproject.tar locates the archive (myproject.tar) in
pre-existing subdirectory case3 of your storage home directory.

HTAR Reference Manual - 27

• The explicit file list (1A) or name-containing file (1B) selects all and only the files
that you want (here, those whose names begin with TIME, a subset of all files stored
in this archive in the previous example).

(2) HTAR opens a preauthenticated connection to your storage (HPSS) home directory
and reports its housekeeping activities (very quickly, in lines that overwrite, so you may
not notice all of these status reports on your screen).
(3) HTAR uses its external index to locate in the archive the (two) specific files that you
requested and then it transfers them by parallel FTP to your local machine without
retrieving the whole archive file.
(4) HTAR summarizes the work done (time, rate, amount) and then ends.

htar -xvf case3/myproject.tar time.txt time2.gif ---(1A)
 OR
htar -xvf case3/myproject.tar -L tlist ---(1B)

 HTAR: Opening HPSS server connection ---(2)
 HTAR: Reading index file
 HTAR: Opening archive file

 HTAR: Reading archive file ---(3)
 HTAR: x time.txt, 1085 bytes, 4 media blocks
 HTAR: x time2.gif, 3452 bytes, 8 media blocks

 HTAR: Extract complete. total bytes read: ---(4)
 6,144 in 0.088 seconds (0.070 MB/s)
 HTAR: HTAR SUCCESSFUL

HTAR Reference Manual - 28

Rebuilding a Missing Index

GOAL: To rebuild the missing index file for a stored HTAR archive file and thereby (re)enable
blocked access to the files within it (and extract some).

STRATEGY: (1) You try to retrieve all files (-xvf) from the HTAR archive myproject.tar in the case3
subdirectory of your storage home directory.
(2) But HTAR cannot find the external index file (here, called myproject.tar.idx) for this
archive, and it returns a somewhat cryptic error message, retrieves no requested files, and
ends. (File myproject.tar.idx may have been moved, renamed, or accidentally deleted
from storage.)
(3) So you execute HTAR again with the special action -X (uppercase, not lowercase,
eks) to request rebuilding the external index for the (same) disabled archive.
(4) HTAR opens a preauthenticated connection to your storage (HPSS) home directory,
locates the archive in subdirectory case3, scans (but does not retrieve) its contents, and
thereby creates a new myproject.tar.idx file (temporarily on local disk, then moved to the
same storage directory as the archive file that it supports). HTAR ends.
(5) Now you again try your original (1) file-retrieval request.
(6) HTAR opens a preauthenticated connection to your storage (HPSS) home directory
and reports its housekeeping activities (very quickly, in lines that overwrite, so you may
not notice all of these status reports on your screen).
(7) HTAR uses its (newly rebuilt) external index to locate the files within the archive and
transfers them by parallel FTP to your local machine (it transfers all of them because
there is no filelist on the execute line).
(8) HTAR summarizes the work done (time, rate, amount) and then ends.

htar -xvf case3/myproject.tar ---(1)

 HTAR: Opening HPSS server connection
 HTAR: Getting HPSS site info
 ERROR: Received unexpected reply from server: 550 ---(2)
 ERROR: Error -1 getting Index File attributes...
 HTAR: HTAR FAILED
 ###WARNING htar returned non-zero exit status.
 72 = /usr/local/bin/htar.exe...

htar -Xf case3/myproject.tar ---(3)

 HTAR: Opening HPSS server connection ---(4)
 HTAR: Reading archive
 HTAR: Copying Index File to HPSS... creating file
 HTAR: HTAR SUCCESSFUL

htar -xvf case3/myproject.tar ---(5)

 HTAR: Opening HPSS server connection ---(6)
 HTAR: Reading index file

HTAR Reference Manual - 29

 HTAR: Opening archive file

 HTAR: Reading archive file ---(7)
 HTAR: x tim1.txt, 3503 bytes, 8 media blocks
 HTAR: x tim2.txt, 4310 bytes, 10 media blocks
 HTAR: x tim2a.txt, 5221 bytes, 12 media blocks
 HTAR: x tim3a., 5851 bytes, 13 media blocks
 HTAR: x time.txt, 1085 bytes, 4 media blocks
 HTAR: x time2.gif, 3452 bytes, 8 media blocks

 HTAR: Extract complete. total bytes read: ---(8)
 28,160 in 0.141 seconds (0.200 MB/s)
 HTAR: HTAR SUCCESSFUL

HTAR Reference Manual - 30

Specifying Very Many Files

GOAL: To specify a very large number of input files yet avoid an HTAR command line too long
for the shell to accept.

STRATEGY: The input-line-too-long problem is analyzed and explained in the HTAR Limitations
(page 15) section above. The best solution is to keep in a separate directory all and only
the intended input files, and then specify that directory's name on HTAR's execute line
(for recursive processing). But if you failed to take that precaution, you can work around
the problem of having too many file names for the shell to accept by using the UNIX
FIND utility as shown here.
(1) Run FIND to select the files that you want (here, those whose names begin with T)
in a way that processes the file list internally, not by the shell. Collect the file names in
an intermediate file (here, called TFILES). The Limitations (page 15) section above
explains why FIND's -EXEC option will not do the job here.
(2) Run HTAR to build the stored archive that you want (-cf) using the -L option to read
in the list of input files (TFILES) that FIND compiled.
(3) Without -v, HTAR shows no verification but does copy its index file to storage when
the archive is done.
(4) Remove the (long) list of names, no longer needed.

find . -name 't*' -print > tfiles ---(1)

htar -cf test.tar -L tfiles ---(2)

 HTAR: Opening HPSS server connection
 HTAR: creating HPSS archive file test.tar
 HTAR: Copying index file to HPSS...creating file ---(3)
 HTAR: HTAR SUCCESSFUL

rm tfiles ---(4)

HTAR Reference Manual - 31

Archiving Between Nonstorage Machines

GOAL: To put files from a directory local to one LC production machine into an HTAR archive
file that resides in a directory local to another LC production machine (not in HPSS
storage as usual).

STRATEGY: Your common home directory is already cross-mounted on every LC production machine
(and /nfs/tmp is cross-mounted on many machines), so you never need to use HTAR to
transfer home files "between machines." And if you want an HTAR archive deposited
on the same machine where HTAR runs (instead of in storage), use HTAR's -E option.
You only need to follow the steps below if you really need to transfer files from one
machine's local directory (such as /usr/tmp) to or from an archive file in another machine's
local directory. Use -F to specify the nonstorage archive host.

(1) To create (-c) an HTAR archive on another machine (instead of storage), run
HTAR on the machine and in the directory where the files to be archived reside (because
HTAR makes an archive using PUTs). For example:

 SOURCE: SINK:
 ILX1 GPS17
 /var/tmp /usr/tmp
 file1...n -----create--->>> myarchive.tar
 [HTAR runs here] myarchive.tar.idx

Use -F to specify the sink machine (where the archive and its index file will go, here
GPS17), and use -f to specify the full pathname of the archive on that sink machine. Note
that HTAR still contacts the HPSS server to log this transaction, even though the archive
is not stored in HPSS.

(2) To extract (-x) file1 from an HTAR archive on another machine (instead of from
storage), run HTAR on the machine and in the directory where the files to be extracted
should arrive (because HTAR uses GETs to extract files). For example:

 SINK: SOURCE:
 ILX1 GPS17
 /var/tmp /usr/tmp
 file1 <<<---extract---- myarchive.tar
 [HTAR runs here] myarchive.tar.idx

Use -F to specify the source machine (where the archive and its index file reside, here
GPS17), and use -f to specify the full pathname of the archive on that source machine.
Note that HTAR still contacts the HPSS server to log this transaction, even though the
archive is not stored in HPSS.

htar -c -f /usr/tmp/myarchive.tar -F gps17 * ---(1)

 HTAR: Opening FTP server connection
 HTAR: Opening HPSS server connection

HTAR Reference Manual - 32

 Creating FTP archive file /usr/tmp/myarchive.tar
 Pass 2: adjusting local index file entries
 Copying index file to remote host...creating file
 HTAR: HTAR SUCCESSFUL

htar -x -f /usr/tmp/myarchive.tar -F gps17 file1 ---(2)

 HTAR: Opening FTP server connection
 HTAR: Opening HPSS server connection
 Reading index file
 Opening archive file
 Reading archive file
 HTAR: HTAR SUCCESSFUL

HTAR Reference Manual - 33

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their

employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or

represents that its use would not infringe privately owned rights. Reference herein to any specific commercial
products, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the United States Government or the
University of California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government thereof, and shall not be used for advertising or product

endorsement purposes.
(C) Copyright 2003 The Regents of the University of California. All rights reserved.

HTAR Reference Manual - 34

Keyword Index
To see an alphabetical list of keywords for this document, consult the next section (page 36).

Keyword Description
------- -----------
entire This entire document.
title The name of this document.
scope Topics covered in this document.
availability Where HTAR runs.
who Who to contact for assistance.

introduction General HTAR overview, analysis.
 htar-role Goals, scope, performance of HTAR.
 htar-files Three key HTAR files diagrammed.
 tar-comparison TAR and HTAR features compared.

htar-usage How to use HTAR.
 execute-line Required syntax, features, defaults.
 htar-errors Common errors conditions, warnings.
 limitations Known HTAR limitations, work-arounds.
 environment-variables Env. variables used by HTAR.

options HTAR options grouped, explained.
 action HTAR's action options (1 reqd).
 archive HTAR's archive option (always reqd).
 control HTAR's control options.

examples Annotated sample HTAR sessions.
 create-archive How to make an HTAR archive.
 retrieve-files How to extract HTAR files.
 rebuild-index How to rescue a lost HTAR index.
 many-files Specifying very many input files.
 find-input Specifying very many input files.
 between-machines Archiving between NONstorage machines.

index The structural index of keywords.
a The alphabetical index of keywords.
date The latest changes to this document.
revisions The complete revision history.

HTAR Reference Manual - 35

Alphabetical List of Keywords

Keyword Description
------- -----------
a The alphabetical index of keywords.
action HTAR's action options (1 reqd).
archive HTAR's archive option (always reqd).
availability Where HTAR runs.
between-machines Archiving between NONstorage machines.
control HTAR's control options.
create-archive How to make an HTAR archive.
date The latest changes to this document.
entire This entire document.
environment-variables Env. variables used by HTAR.
examples Annotated sample HTAR sessions.
execute-line Required syntax, features, defaults.
find-input Specifying very many input files.
htar-errors Common errors conditions, warnings.
htar-files Three key HTAR files diagrammed.
htar-role Goals, scope, performance of HTAR.
htar-usage How to use HTAR.
index The structural index of keywords.
introduction General HTAR overview, analysis.
limitations Known HTAR limitations, work-arounds.
many-files Specifying very many input files.
options HTAR options grouped, explained.
rebuild-index How to rescue a lost HTAR index.
retrieve-files How to extract HTAR files.
revisions The complete revision history.
scope Topics covered in this document.
tar-comparison TAR and HTAR features compared.
title The name of this document.
who Who to contact for assistance.

HTAR Reference Manual - 36

Date and Revisions

Revision Keyword Description of
Date Affected Change
-------- -------- ------
17Nov03 htar-role Size and speed details updated.
 limitations Size and speed details updated.
 execute-line General transfers with -F clarified.
 action General transfers with -F noted.

23Jul03 between-machines
 New section on nonstorage archiving.
 index New keyword for section.
 examples More verbose, explicit HTAR output.
 tar-comparison
 Details updated for new features.
 limitations Only passwordless FTP servers allowed.
 control -F, -H, -M control options added.
 introduction Class of service clarified.

13May03 availability HTAR now runs under Linux/CHAOS.
 htar-role Use NETMON for performance data.
 execute-line Consistency file location under Linux.

24Jun02 htar-role Size and copy issues clarified.
 execute-line Y option added.
 Single-copy default now, dual with Y.
 limitations Maximum file size clarified.
 control -Y 150 for dual copy noted.

01May02 htar-errors Retrieval with filters problem noted.
 limitations Retrieval with filters problem noted.
 control -L use expanded.
 retrieve-files
 Example now treats filter problem.

17Oct01 options -S and -h roles clarified.
 Options section subdivided.
 index New keywords for subsections.

20Aug01 entire First edition of HTAR manual.

TRG (17Nov03)

UCRL-WEB-200720
Privacy and Legal Notice (URL: http://www.llnl.gov/disclaimer.html)
TRG (17Nov03) Contact on the OCF: lc-hotline@llnl.gov, on the SCF: lc-hotline@pop.llnl.gov

HTAR Reference Manual - 37

http://www.llnl.gov/disclaimer.html

